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Summary 

Attention is drawn to the generalisation to the fractal geometry of the 
relations which control the interfacial energy and mass exchange in the 
linear approximation. 

From this kinetic analysis the solid state motion of lithium in Li,Fe& 
is shown to be related to the fractal ordering of this ion in the lattice. 

Scaling phase transitions are pointed out. 

Li, Fe& [l] is a very interesting member of the group of layered com- 
pounds available for the solid state electrochemical reduction through lith- 
ium insertion in the van der Waals gap, when understanding the kinetic 
differences of the ionic motion both in the single- and in the two-phase 
states. Indeed, this non-stoichiometric compound shows two major domains, 
the first being diphased (6.14 < x < 1.09) and the second being monophased 
(1.09 < x < 2), with a slight first order electronic transition in the middle of 
the monophased domain (3~ = 1.5) [2,3]. 

In this latter case, the electrochemical limitations arise from dissipative 
diffusion control, but the nature of the motion through the two-phase state 
is unknown because of the lack of fit with diffusion theory [4]. 

Therefore in order to understand the motion of the poor/rich ionic 
interface through the reduction, we have to assume the existence of an 
electrochemical potential gradient on the frontier. However, the unknown 
geometry of such an interface impedes the use of the classical theory for a 
planar one [5,6]. 

Starting from a new theory named TEISI (Transfert d’Energie sur Inter- 
face a Similitude Inteme) [ 71, developed in the Laboratoires de Marcoussis, 
in an attempt to understand the electrochemical transfer and transport in 
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porous media [8], the frontier of the segregated domains has been shown to 
be characterized by a “self similar” geometry [9]. The Hausdorff-Mandel- 
brot (H.M.) dimension of this geometry [9] is an integer or non-integer D 
value (0 < D < 2). It is given the name “fractal” [9]. 

It is characterized by scaling properties [9 - 111, i.e., 
(a) image independence of optical magnification; 
(b) Hausdorff measure [12] higher than the topological one; 
(c) Richardson length [13], or electroactive interface, defined by 

I= Z,Dql-Dwhere 1, is the apparent length of the interface, q is the elemen- 
tary unit of the measure, and D is the H.M. dimension. 

The H.M. dimension is defined as follows: If each unit of the interface 
is replaced by N (self) similar units having a scale coefficient given by (Y = 
1,/q, then, qDN= I, D. l,D is a geometrical constant of the “fractal” named 
“contenant” (Fig. 1). 

f-l.0 

Fig. 1. Building of a self similar structure (Fractal), having a space dimension D = 1.27. 
I is the length of ,the Richardson interface. This curve may be the model of the rough 
surface. 

D = 1 if the interface is a classical one; D = 2 means that the interface 
is a Peano curve 1141 and the system is then controlled by the diffusion 
migration of the ion; D z 1.5 is a non-integer random fractal dimension [ 91. 
D may be lower than 1 if the rich domain is clustered in the poor domain [ 71. 



361 

The “TEISI” model describes a first order transfer controlled by the 
phenomenological linear relation between the macroscopic exchange flows 
@(t) and the local driving forces A(t), through the Richardson interface: 
then 

W) = J%,&‘-~@) A@) 

where k, is a constant, andp = iw is Laplace’s variable. 

(1) 

Some assumptions about the storage of the species in the “fractal” 
geometry lead to the relation 

M.P) = %tP~/A p = iw (2) 

where v0 is a constant, A = D if the driving force is controlled by the trans- 
fer, A = 213 if the driving force is controlled by the diffusion in the “fractal”, 
and A = DD’ if some non-integer super scaling effects occur (a fractal of 
dimension D’ in a fractal having a dimension D). 

This major relation means that a space/time coupling occurs via the 
kinetics. Finally, the major result of this kinetic theory shows that the 
stationary macroscopic flow d(t) us. the local driving force A(t) relation, 
through the D dimension self-similar interface (SSI), is given by: 

& 440 = kA(t) 
1 

n= -- 
A 

1 

where k is a constant and d”/dt” is a non-integer differential operator [15]. 
According to irreversible thermodynamics [16], A = 1 gives a fluxes/forces 
phenomenological relationship. According to Oldham’s studies [ 171, A = 2 
agrees with the diffusion process. In this latter case, the Richardson interface 
is a Peano curve. The chemical diffusion process is therefore a most usual 
case of the TEISI model, but not the only one. This equation leads to three 
consequences which can be experimentally tested. 

(1) All percussional relaxation processes follow the Curie-von Schweilder 
law, the most common being t -l’A/l?(l - l/A) (I’(--n) being Euler’s func- 
tion), and leading to the D value which should be independent of the non- 
geometric parameters. 

(2) First order transfer processes on a D fractal interface give a Cole and 
Cole FT transfer function [ 71 

1 
FTcv 

1 + (iw)l’A/k 

from which A values can be derived. 
(3) Catastrophic kinetic changes at the transition time Ti through 

constant macroscopic flOW #i fOllOW $iATi = const. [IS]. 
This relation is named the “time-scaling” law. A = 1 gives Faraday’s law, 
A = 2 is related to Sand-Karaoglanoff’s law [ 51; if 1 < A < 2, A is the 
Peukert coefficient [ 7, 181. 

The great accuracy of this theory with the kinetics in porous media was 
recognized in 1980 [ 71. In addition is has been pointed out that the electro- 
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chemical limitation in solid state insertion kinetics of the lithium ion through 
the lamellar Li,FeS* structure is fittingly described by the TEISI model [ 151. 
Indeed, as shown in Fig. 2 which gives the thermodynamic data, the phase 
diagram of the non-stoichiometric compound consists of two parts: 

(a) x < 1.09: the structure is diphased and the frontier between lithi- 
um-rich and poor domains might be a random self similar one (Dth = 1.5); 

E(vott) 

2.5 

1.5 

+]L- Id1 * 
Ii4 

-G- 

0 0.5 1.0 1.5 2.0 x I" LI,M, 

Fig. 2. Thermodynamic data for Li, Fe& layered non-stoichiometric compound [ 11. 

Fig. 3. Example of Faradaic impedances analysed from the major property of the Cole- 
Cole spectra: (O/w,) = [u(W)/v(W)lD. w, is the critical frequency, D is the H.M. dimen- 
sion, D = 2 means that the Richardson interface is a Peano curve. Non-integer D means 
the existence of a fractal interface for the transfer. 
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(b) x > 1.09: Li,Fe& is a single, non-stoichiometric phase (Dth = 2). 
I& is the theoretical value for D. 

These hypotheses are in fair agreement with the kinetic data: 
(a) Faradaic impedances depend on frequencies like a Cole and Cole 

transfer function (Fig. 3). A Cole and Cole parameter gives fractal dimen- 
sions close to the theoretical values [D(x d 1.09) z 1.6; D(x > 1.09) z 2.21. 

(b) The relaxation of the Dirac pulses presents a Curie-von Schweilder 
form, and the Hausdorff-Mandelbrot dimensions at equilibrium are close 
to the former one (Fig. 4). 

The same tests in a steady state during the reduction show that the 
structure is two phased over all the non-stoichiometric domain (x < 1.5) 
and the kinetic limitation never agrees with the diffusion theory; Curie- 
von Schweilder’s law as well as Peukert’s law lead to a D value close to 
1.5 f 0.15 [l&19]. 

I I 
loql/tcsl 

Fig. 4. Curie-von Schweilder type of relaxation. Values of x in L&Fe&: 0, 0.30; x, 
0.59; +, 0.84; 0, 1.36; and A, 1.50. I(mA/cm*) = 0, AI = 6 mA/cm’. 

Fig. 5. Comprehensive view of the relation between the H.M. dimension, here given for 
different kinds of tests, and the reduction rate (x) of the layered, non-stoichiometric 
compounds Li,FeS2. D = 2 means a diffusion control. D < 2 means a fractal control. 
- - Expected values for single crystal (D’ = 1.0). - * - Expected values for self-similar 
porosity with D’ = 1.1. 
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Figure 5 shows the D value us. x in Li,Fe&. The small difference 
between the theoretical and observed values may be related to a chemical 
hyperscaling consequence [ 71 originating in the slight self-similar porosity of 
the monogranular electrode (D’ = 1.1 -grain size z 30 E.trn -electrode thick- 
ness = 100 pm). 

Acknowledgments 

This work was supported by the French Direction des Recherches 
et Etudes Techniques (DRET) and the Laboratoires de Marcoussis. 

References 

1 

8 

9 

10 

11 
12 

13 
14 
15 

16 

17 
18 

19 

R. Brec, A. Le Mehaute and M. Armand, French Pat. 78 08662 (1978); French 
Pat. 80 08385 (1980). 
R. Brec, A. Dugast and A. Le Mehaute, Mater. Res. Bull., 15 (1980) 619. 
A. Le Mehaute, R. Brec, A. Dugast and J. Rouxel, Solid State Zonics, 314 (1981) 185. 
A. Le MBhaute, Thesis, Nantes, France, 1979. 
K. J. Vetter, Electrochemical Kinetics, Academic Press, New York, 1967. 
A. T. Murphy and D. L. Wise, Chem. Eng., 27 (1966) from January 4 to May 25. 
A. Le Mehaute and G. Gzepy, Introduction to Energy Dissipation on Fractal Znter- 
face: The Geometry of Kinetics, to be published by B. Mandelbrot. 
A. Le Mehaute, A. de Guibert, M. Delaye and C. Filippi, C. R. Acad. Sci., Paris, 994 
(1982) II 835. 
B. Mandelbrot, Les Objets Fractals, Flamarion, Paris, 1975; Fractal: Form, Chance 
and Dimension, Freeman, San Francisco, 1977; The Fractal Geometry of Nature, 
Freeman, San Francisco, 1982. 
P. G. de Gennes, in Scaling Concepts in Polymer Physics, Cornell University Press, 
Ithaca, New York, 1979, Ch. III. 
P. G. de Gennes, Phys. Lett., 38 A (1972) 339. 
F. Hausdorff, Math. Ann., 79 (1928) 157; A. S. Besicovich, Math. Ann., 101 (1929) 
161; L. Pontragin, L. Shirelman, Annalen of Math., 33 (1932) 156. 
L. F. Richardson, General Systems Year Book, 6 (1961) 139. 
G. Peano, Math. Ann., 36 (1880) 157. 
J. M. Guelfan and G. E. Chilov, Les Distributions, Dunod, Paris, 1962; K. B. Oldham 
and J. S. Spanier, The Fractional Calculus, Academic Press, New York, 1974. 
G. de Groot and D. Mazur, Thermodynamics of Irreversible Processes, Elsevier, 
Amsterdam, 1962; I. Prigogine, Thermodynamique des Phe’nomines Zrreversibles, 
Dunod, Paris, 1947. 
K. B. Oldham, Anal. Chem., 41 (1963). 
M. A. Dasoyan and I. A. Aguf, Current Theory of Lead Acid Batteries, Technicopy 
Ltd., Stonehouse, Glos., UK, 1979, p. 95. 
A. Dugast, Thesis, Nantes, France, 1981. 


